b0y-101 Mini Shell


Current Path : E:/www/b-group.old/spfin/mainpay/jwt-framework/src/Component/KeyManagement/Analyzer/
File Upload :
Current File : E:/www/b-group.old/spfin/mainpay/jwt-framework/src/Component/KeyManagement/Analyzer/RsaAnalyzer.php

<?php

declare(strict_types=1);

namespace Jose\Component\KeyManagement\Analyzer;

use InvalidArgumentException;
use function is_array;
use function is_string;
use Jose\Component\Core\JWK;
use ParagonIE\ConstantTime\Base64UrlSafe;

final class RsaAnalyzer implements KeyAnalyzer
{
    public function analyze(JWK $jwk, MessageBag $bag): void
    {
        if ($jwk->get('kty') !== 'RSA') {
            return;
        }

        $this->checkExponent($jwk, $bag);
        $this->checkModulus($jwk, $bag);
    }

    private function checkExponent(JWK $jwk, MessageBag $bag): void
    {
        $e = $jwk->get('e');
        if (! is_string($e)) {
            $bag->add(Message::high('The exponent is not valid.'));

            return;
        }
        $exponent = unpack('l', str_pad(Base64UrlSafe::decode($e), 4, "\0"));
        if (! is_array($exponent) || ! isset($exponent[1])) {
            throw new InvalidArgumentException('Unable to get the private key');
        }
        if ($exponent[1] < 65537) {
            $bag->add(Message::high('The exponent is too low. It should be at least 65537.'));
        }
    }

    private function checkModulus(JWK $jwk, MessageBag $bag): void
    {
        $n = $jwk->get('n');
        if (! is_string($n)) {
            $bag->add(Message::high('The modulus is not valid.'));

            return;
        }
        $n = 8 * mb_strlen(Base64UrlSafe::decode($n), '8bit');
        if ($n < 2048) {
            $bag->add(Message::high('The key length is less than 2048 bits.'));
        }
        if ($jwk->has('d') && (! $jwk->has('p') || ! $jwk->has('q') || ! $jwk->has('dp') || ! $jwk->has(
            'dq'
        ) || ! $jwk->has('qi'))) {
            $bag->add(
                Message::medium(
                    'The key is a private RSA key, but Chinese Remainder Theorem primes are missing. These primes are not mandatory, but signatures and decryption processes are faster when available.'
                )
            );
        }
    }
}

Copyright © 2019 by b0y-101